Some Results on Hypercentral Units in Integral Group Rings

نویسنده

  • Yuanlin Li
چکیده

In this note we investigate the hypercentral units in integral group rings ZG, where G is not necessarily torsion. One of the main results obtained is the following (Theorem 3.5): if the set of torsion elements of G is a subgroup T of G and if Z2(U) is not contained in CU (T ), then T is either an Abelian group of exponent 4 or a Q∗ group. This extends our earlier result on torsion group rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Units in Integral Group Rings II 1

Recent work on central units of integral group rings is surveyed. In particular we present two methods of constructing central units, induction and lifting, and demonstrate how these constructions can often be used to find generators for large subgroups in the full group of central units of an integral group ring.

متن کامل

Torsion Units in Integral Group Rings of Conway Simple Groups

Using the Luthar–Passi method, we investigate the possible orders and partial augmentations of torsion units of the normalized unit group of integral group rings of Conway simple groups Co1, Co2 and Co3. Let U(ZG) be the unit group of the integral group ring ZG of a finite group G, and V (ZG) be its normalized unit group

متن کامل

Torsion units in integral group rings of Janko simple groups

Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko simple groups. As a consequence, for the Janko groups J1, J2 and J3 we confirm Kimmerle’s conjecture on prime graphs.

متن کامل

The unit sum number of Baer rings

In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.

متن کامل

Unit Groups of Integral Finite Group Rings with No Noncyclic Abelian Finite Subgroups

It is shown that in the units of augmentation one of an integral group ring ZG of a finite group G, a noncyclic subgroup of order p, for some odd prime p, exists only if such a subgroup exists in G. The corresponding statement for p = 2 holds by the Brauer–Suzuki theorem, as recently observed by W. Kimmerle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002